Summability of alterations of convergent series
نویسندگان
چکیده
منابع مشابه
Matrix Transformations from Absolutely Convergent Series to Convergent Sequences as General Weighted Mean Summability Methods
We prove the necessary and sufficient conditions for an infinity matrix to be a mapping, from absolutely convergent series to convergent sequences, which is treated as general weighted mean summability methods. The results include a classical result by Hardy and another by Moricz and Rhoades as particular cases.
متن کاملOn absolute generalized Norlund summability of double orthogonal series
In the paper [Y. Okuyama, {it On the absolute generalized N"{o}rlund summability of orthogonal series},Tamkang J. Math. Vol. 33, No. 2, (2002), 161-165] the author has found some sufficient conditions under which an orthogonal seriesis summable $|N,p,q|$ almost everywhere. These conditions are expressed in terms of coefficients of the series. It is the purpose ofthis paper to extend this result...
متن کاملLogarithmic Summability of Fourier Series
A set of regular summations logarithmic methods is introduced. This set includes Riesz and Nörlund logarithmic methods as limit cases. The application to logarithmic summability of Fourier series of continuous and integrable functions are given. The kernels of these logarithmic methods for trigonometric system are estimated.
متن کاملSummability Method of Jacobi Series
In this paper, an application to the approximation by wavelets has been obtained by using matrix-Cesàro (Λ · C1) method of Jacobi polynomials. The rapid rate of convergence of matrix-Cesàro method of Jacobi polynomials are estimated. The result of Theorem (6.1) of this research paper is applicable for avoiding the Gibbs phenomenon in intermediate levels of wavelet approximations. There are majo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 1981
ISSN: 0161-1712,1687-0425
DOI: 10.1155/s0161171281000392